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a b s t r a c t 

Monitoring, understanding and predicting city user behaviour (hottest places, trajectories, flows, etc.) is 

one the major topics in the context of Smart City management. People flow surveillance provides valuable 

information about city conditions, useful not only for monitoring and controlling the environmental con- 

ditions, but also to optimize the deliverying of city services (security, clean, transport,..). In this context, it 

is mandatory to develop methods and tools for assessing people behaviour in the city. This paper presents 

a methodology to instrument the city via the placement of Wi-Fi Access Points, AP, and to use them as 

sensors to capture and understand city user behaviour with a significant precision rate (the understand- 

ing of city user behaviour is concretized with the computing of heat-maps, origin destination matrices 

and predicting user density). The first issue is the positioning of Wi-Fi AP in the city, thus a comparative 

analyses have been conducted with respect to the real data (i.e., cab traces) of the city of San Fran- 

cisco. Several different positioning methodologies of APs have been proposed and compared, to minimize 

the cost of AP installation with the aim of producing the best origin destination matrices. In a second 

phase, the methodology was adopted to select suitable AP in the city of Florence (Italy), with the aim 

of observing city users behaviour. The obtained instrumented Firenze Wi-Fi network collected data for 6 

months. The data has been analysed with data mining techniques to infer similarity patterns in AP area 

and related time series. The resulting model has been validated and used for predicting the number of AP 

accesses that is also related to number of city users. The research work described in this paper has been 

conducted in the scope of the EC funded Horizon 2020 project Resolute ( http://www.resolute-eu.org ), for 

early warning and city resilience. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The understanding of city users’ behaviour is one of the most

hallenging activities in a Smart City context: how the tourists

short, medium and long term) are moving and using the city,

ow the commuters are arriving and leaving the city, etc. City ser-

ices are mainly related to mobility, government, energy, culture,

vents, commercial activities, environment, etc. Among these ser-

ices, mobility is considered as a commodity; thus, transportation

nd mobility analyses are valuable aspects always considered for

n effective definition of Smart City. According to Giffinger et al.

24] , Smart Mobility is among the key factors of a modern Smart

ity, including local and international accessibility, availability of

CT infrastructures, sustainable, innovative and safe transport sys-

ems. Caragliu et al. [13] include traditional transport communi-
∗ Corresponding author. 

E-mail addresses: pierfrancesco.bellini@unifi.it (P. Bellini), daniele.cenni@unifi.it 
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ation infrastructures among the essential requirements for Smart

ities. 

In the context of mobility and transport, traffic/flow analysis is

 major prerequisite for planning traffic routing. Hence, it is a cen-

ral part of the so called Intelligent Transportation Systems (ITS)

or public transportation. Traffic flow analysis is commonly used

o ease the transportation management, for regulating the access

ontrol to the cities, for Smart Parking, for traffic surveillance pro-

iding information about road conditions and travel, or for moni-

oring and controlling the environmental conditions, such as harm-

ul emissions (e.g., CO 2 , PM10, ozone). The European Commission

ndicates, among the main topics that should be considered with

pecial attention in the framework of the CARS 2020 process, the

mplementation and promotion of ITS, including Smart Mobility

CARS 2020] [14] . 

Some of the techniques adopted for traffic monitoring and man-

gement can be declined for people flow analysis and thus to sup-

ort understanding the city user behaviour. For the city munici-

ality it is very important to know the movements of city users

ithin a certain precision, and detecting where and how they are

rossing the city and exploiting services by using different kinds of

http://dx.doi.org/10.1016/j.jvlc.2017.08.005
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transportation solutions: car, bike, walking, taxi, car sharing, buses,

tram, etc., targeting services into the city [ [4] , [5] , [11] ]. 

Usually telecom operators do not provide detailed information

about city user behaviour: they may provide the number of peo-

ple connected to each cluster of cellular antennas at a given time

slot during the day, but not how the people move actually in the

city, passing from one cluster/cell to another. Moreover, the tele-

com operator collect the cellular traffic from all the city users in-

cluding residences that are stably at home and thus are not walk-

ing and using the city services on the road. Telecom operators are

also constrained by the national contract from operator to the citi-

zen in term of privacy and data use. At this regard, specific tracking

services for mobile devices are needed and, when applied, the cit-

izens have to be informed via an informed consent (e.g., terms of

use, privacy policy). 

The typical descriptor of people flow analysis in the city is

the so called OD matrix (Origin Destination Matrix). The OD ma-

trix presents on both axes the city zones, while the single ele-

ment (at the intersection) contains the number of people (or the

probability) of passing from the zone of origin to the zone of

destination, in a given time window, for a given kind of users,

for a given day of the week. Therefore, the OD matrix estima-

tion is the main target results to understand the city usage, and

thus it is a very relevant data source for traffic/people flow pre-

diction and management. In particular, OD matrices are can be

used as default descriptors of the traffic conditions and are used

for (i) planning optimized routes predicting shortest and viable

paths exploited by routing and path algorithms; (ii) providing info-

traffic services on desktop or mobile devices, via the so called Ad-

vanced Traffic Management Systems (ATMS), ITS managing busses

and vehicles (intelligent Transportation Systems), and UTS (ur-

ban traffic systems) managing semaphore networks; (iii) planning

evacuations. 

OD matrices are typically time dependent, and thus their dy-

namic real-time estimation may be needed, or at least the esti-

mation of their values every 15 min, and distinguishing from the

different days of the week (working days, festive and pre-festive

days). Their values are of primary interest if they represent the

maximum or at least sustainable traffic values, disregarding when

the traffic infrastructure cannot sustain the traffic flow. In the con-

text of traffic flow, some methods for computing OD matrices use

parametric estimation techniques (e.g., Maximum Likelihood, Gen-

eralized Least Squares, Bayesian inference). Maximum Likelihood

methods minimize the likelihood of computing the OD matrix and

the guessing traffic. Other methods based on traffic counts include

Combined Distribution and Assignment (CDA) [15] , Bi-level Pro-

gramming [19] , [30] , Heuristic Bi-level Programming [32] , Path Flow

Estimation (PFE) [35] , or Neural Networks [25] . For example, Ashok

and Ben-Akiva [3] used a Kalman filtering technique to update the

OD matrix. Time dependent offline estimation deals with time-

series of traffic counts. 

Typically, building an OD matrix for mobility requires installing

devices to count every single vehicle, and eventually recording the

speed of each vehicle on the road. A traffic counter is a device

that records vehicular data (i.e., speed, type, weight). At this re-

gard, the US Federal Highway Administration defines three main

traffic counting methods: human observation (manual), portable

traffic recording devices and permanent automatic traffic recorders

(ATR). Thus, at the level of traffic flow observation several differ-

ent techniques are used: video cameras, pneumatic road tubes,

piezo-electric sensors embedded in the roadway as inductive loop

detectors, magnetic sensors and detectors, microwave radar sen-

sors, Doppler sensors, passive infrared sensors, passive acoustic ar-

ray sensors, ultrasonic sensors, laser radar sensors. Most of these

sensors use intrusive technologies and require pavement cut; in

some cases, lane closure is required, the devices are sensitive
o environmental conditions and require an expensive periodic

aintenance. 

Several solutions have been proposed to solve the problem of

n effective sensor placement for traffic counting. For example, in

16] Contreras et al. present a novel approach for studying the ob-

ervability problem on highway segments, using linearized traffic

ynamics about steady-state flows. They analyze the observability

roblem (sensor placement) and propose a method that compares

cenarios with different sensor placements. In [6] Ban et al. present

 modelling framework and a polynomial solution algorithm to de-

erminate optimal locations of point detectors, for computing free-

ay travel times. They use an objective function to minimize the

eviation of estimated and actual travel times; the problem is dis-

retized in both time and space, using a dynamic programming

odel, solved via a shortest path search in an acyclic graph. In

31] the performance of the sensors is measured in terms of es-

imation error covariance of the Best Linear Unbiased Estimator

f cumulative flows in the network. Sensors are placed to mini-

ize the sum of the error covariance and of a cost penalizing the

umber of sensors, using the concept of Virtual Variance. Ivanchev

t al. [27] defines a measure of importance for a node in a traf-

c network and use it to solve the sensor placement problem, by

aximising the information gain (i.e., users’ routing choices). It

resents a method for finding the optimal number of sensors to

e placed, modelling, and maximising the utility stemming from

he trade-off between cost, performance, robustness and reliabil-

ty of the sensor placement. Bao et al. [9] describes some spatial

istributions of traffic information credibility and proposes differ-

nt sensor information credibility functions, to describe the spa-

ial distribution properties. The authors propose a maximum ben-

fit model and its simplified model to solve the traffic sensor lo-

ation problem. In [7] Ban et al. propose a modelling framework

o capture a sequential decision-making process for traffic sensor

lacement. Optimal sensor deployment for a single application is

etermined by a staged process or dynamic programming method;

ensor locations for new applications can be optimally solved by

he DP method considering existing sensors. 

Some of the above-mentioned techniques can be used to pro-

uce vehicle classification (e.g., rural cars, business day trucks,

hrough trucks, urban cars). Recently, other techniques have been

dopted as RFID, Bluetooth, Real Time Location System (RTLS) and

i-Fi access points [17] , [36] . In some cases, the position of the ve-

icle can be monitored from the GPS position of mobile devices in-

talled on the vehicle itself, or simply by using smartphone naviga-

ors (e.g., Google Maps, TomTom, Waze), that provide positions and

elocities of the vehicles. In these two cases, vehicle’s tracking is

uthorized by the users (through an informed consent) that install

he device or run the mobile application on the smartphone or

avigator. RFID is quite unsuitable to detect devices because of the

mall range of action. Bluetooth can be more suitable but it is ex-

ensive, since specific stations to collect the passages are needed.

i-Fi access points are less reliable in detecting the presence of

igh speed people as in motorized sources with respect to phys-

cal devices, and GPS-related methods. In [43] the Wi-Fi analysis

as been used to assess the passages of pedestrians in buildings.

n [38] , the quality and feasibility of using multiple solutions based

n Wi-Fi and Bluetooth for people tracking has been has been pre-

ented providing the evidence that Wi-Fi count may be more re-

iable. In [23] , an early experiment in tracking people flow by ex-

loiting Wi-Fi data has been reported exploiting direct MAC ad-

ress tracking. In [2] , a small scale experiment has been performed

or tracking a limited number of people (80 0 0) in well-known and

estricted area with 20 AP. The effective precision and assessment

as not provided. In [41] , a similar experience has been analysed,

ith the aim of extracting trajectories. 
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.1. Aims and structure 

On the other hand, we addressed the usage of Wi-Fi Access

oints (APs) as devices to have indication of people flow and den-

ity in the city. Wi-Fi solution is viable given the high distribution

f mobile devices, the low cost of a Wi-Fi AP, and the fact that a

uge number of APs is already installed in the cities. This solution

s quite cheap and easy to implement, also considering that many

unicipalities offer free Wi-Fi connectivity, and the needed cover-

ge can be easily obtained with a small effort adding a few more

Ps, or just reconfiguring those already present, and thus the pro-

osed approach is used only for selecting those to be reconfigured.

herefore, the paper presents mainly two major results: 

1) Methodology for identification of the best placement for Wi-Fi

Access Points, as detectors for collecting data for user behaviour

understanding, maximising the precision of OD matrix compu-

tation as one of the most attended results. The methodology

aims at limiting the costs to obtain reasonable data for massive

and systematic measuring of the whole city flows by humans.

The study and solution has been validated by using the data set

introduced in [37] which covers cab mobility traces, collected in

May 2008 in San Francisco (USA). This result has been used to

identify the most suitable AP in Florence for reconstructing OD

and flows. 

2) The data collected from the Firenze Wi-Fi network (instru-

mented for people flow tracking) have been analysed to de-

rive a number of information and knowledge: (i) most frequent

places and hottest areas in the city, represented as heat map;

(ii) daily user behaviour patterns around AP in the city to un-

derstand how the city is used; (iii) OD matrix to extract people

movements; and a (iv) predictive model for guessing number of

Wi-Fi connections for each time slot and AP (which are directly

related to people presences, behaviour and flows). This result

poses the basis for exploiting the produced model and instru-

ment for early warning. That means as a tool for detecting dys-

functions or un-expected patterns in the city user movements

at their early inception. 

The proposed AP positioning strategy, combined with the data

nalysis of Wi-Fi data, constitute an innovative methodology to

nderstand user behaviour at low costs in urban areas. Such ser-

ices include: enrichment of traffic sensor data (i.e., physical road

ensors, cellular data), notification tools for alerts or events with

uge crowds (e.g., people’s flood detection, emergencies, manifes-

ations), development of traffic/people routing and optimization al-

orithms, resilience management and realtime monitoring tools,

uilding of green areas or recreation activities in zone at high den-

ity of pedestrians, control of air pollution, and city cleaning, in-

reasing city security. 

These features are becoming always more requested since ac-

ording to the last European Directives for large events, the lim-

ted number of people is mandatory and also tools for monitor-

ng and to react to critical events. The research work described

n this paper has been conducted in the context of the Resolute

orizon 2020 project ( http://www.resolute-eu.org ) which has been

ounded by the European Commission. RESOLUTE is focussed on

ity resilience assessment and management and thus the solution

roposed is a component of the risk assessment model and tool

n the basis of the distribution of population in real time, on pre-

icting them, and on for early detection of critical situations in the

ity [10] . 

This paper is structured as follows. In Section 2 , the defini-

ion of the user behaviour representation analysis and tools in-

luding OD matrix are discussed, together with the possible data

or their estimation and study (data collected in San Francisco).

ection 3 presents a number of models for AP positioning and
omparatively evaluate them by using various AP scenarios and

heir capability of computing OD matrix with respect to the real

ata used. In the second part of the article, we describe the re-

ults obtained for city user behaviour understanding derived from

he application of the proposed methodology for AP positioning in

nstrumenting the city of Florence (Italy) by reconfiguring the Wi-

i network. Thus, as a second result, in Section 4 , the data col-

ected from the Firenze Wi-Fi network has been analysed in differ-

nt manners by data mining to extract the most frequented places,

he typical city users’ behaviour (presenting the proposed OD Spi-

er Flow tool), the clustering of city users’ behaviour inferring pat-

erns in data about city usage. Finally, Section 5 presents the pre-

ictive model which is estimated in real time for each single AP in

he city, experimental results of a forecasting model for predicting

umber of connections. Conclusions are drawn in Section 6 . 

. User behaviour analysis vs data set 

User behaviour is urban area is represented by a set of tools:

i) trajectories, (ii) hottest places also represented as heat maps,

iii) Origin Destination Matrices, (iv) analysis of regency and fre-

uencies. These results and model can be mathematically obtained

ith some specific algorithms processing singles GPS traces of the

ovements. 

In more details, the OD matrix representing flows among the

ones of the city (considered for example as zip codes z or smaller

reas) is defined as 

 D n,n = 

⎛ 

⎝ 

z 1 , 1 · · · z 1 ,n 
. . . 

. . . 
. . . 

z n, 1 · · · z n,n 

⎞ 

⎠ (1) 

here: z i,j represents the total number of traffic counts from z i to

 j (i.e., in our context how many cabs moved from z i to z j ) defined

s 

 i, j = 

∑ 

t∈ T 
n t ( i, j ) , (2) 

nd, T is the set of unique cab traces, n t ( i, j ) is the number of traffic

ounts from z i to z j for the trace t. 

This means that, if the aim consists in identifying the best po-

ition for the sensors (may be Wi-Fi AP as in this case), one should

ave the data representing the whole set of people movements

n the city, that is unrealistic, no one has those data neither the

elecom operators. On the other hand, Fei et al. [21] present a

onlinear two-stage stochastic model to compute sensor location

classical traffic flow detector as spires) maximizing the quality

f origin-destination matrix (OD) by starting from the traffic flow

ata. In this case, the authors presented an iterative heuristic solu-

ion algorithm, Hybrid Greedy Randomized Adaptive Search Proce-

ure (HGRASP), to find the near-optimal locations. This approach

s feasible when the flows are known. The validation of any AP

ositioning methodology for the people/flow count is not a triv-

al task. In principle, one should install the APs in certain positions

nd demonstrate, making measures on the real context, that they

roduce strongly correlated data with the real people flows, among

he different areas of the city. Since this approach is very expen-

ive and unfeasible for a number of configurations, we adopted an

ndirect method described in the following. 

.1. Reference data from San Francisco vs AP 

Due to the above described difficulties for our analysis, we ex-

loited the data set introduced in [37] , that includes cab traces in

an Francisco, collected in May 2008. The dataset reports all the

ab traces by providing precise GPS positions for each of them. In

http://www.resolute-eu.org
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Fig. 1. Trace flows in San Francisco on a working day of May, 8:0 0 a.m.–9:0 0 a.m. 

Fig. 2. San Francisco OD matrix as a chord diagram among the 13 central ZIP areas 

of the city (real cab flows). 
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Fig. 1 , the traces are reported on the city map (for a particular day

in the time range 8:0 0 a.m.–9:0 0 a.m.). 

The total data set consists of 446,079 traces based on about 11.2

million of single GPS points collected by cab movements, not only

in the downtown of San Francisco, but spanning the city’s neigh-

bourhoods. The areas at higher density are those in the down-

town, coherently with what you could have from the movements

of pedestrians in the city. This area is covered by about 13 zip code

areas. 

In order to perform an effective data analysis and visualization,

some web tools for viewing and comparing flows in different sce-

narios were developed. At this regard, OD matrix and thus flows

among the zip areas are represented with a chord diagram, to put

in evidence single and aggregate contributions to the total flow

count among the various city zones (in Fig. 2 , the chord diagram

is reported for the central part of the city with 13 zip code areas).

An interactive version of the produced chord based tool is accessi-

ble at http://www.disit.org/6694 . The user can select a time inter-

val in the day to visualize the corresponding chord diagram, which

is constituted by circular sectors, each of them representing a city

area; passing the mouse over a sector provides additional informa-

tion about the traffic counts originated from it towards other zip
reas. In this manner, it is possible to depict in a compact and in-

uitive way the traffic flows among the various zones. Additionally,

t is also possible to remove a circular sector to simplify the dia-

ram and make easier the analysis of the flows of interest. 

In the case of San Francisco data, the structure of the city and

he position of the APs in the downtown is known (see Fig. 3 ).

he positions of AP in the area have been taken from OpenWiFiS-

ots ( http://www.openwifispots.com ). They consist of 494 Wi-Fi

Ps providing city services, from a total of 983 APs at disposal

also located in coffee shops, hotels, restaurants, libraries, bars,

ookstores, grocery stores). Therefore, we may suppose to use the

i-Fi network to estimate the people flow in the city produced by

obile devices, according to their MAC address or to hash code of

he MAC address and other features of the mobile device. 

This solution could be implemented by collecting the events of

onnection and release of mobile devices with respect to the APs

each event reports date, time, device ID to give internet access,

nd AP identifier). Each AP streams the collected data to a central

erver which anonymizes the MAC addresses, records the data, and

treams the combined multi-streams to the data analytics. In alter-

ative, some of the APs or aggregators of APs may compute the

nonymization algorithm, based on a hash code of the identifiers.

nce detected the passages of devices on the APs, the OD matrix

s well many other information can be can be derived. 

This means that, we can exploit these data filtering out the

races matching with hypothetical position of AP and observing if

he obtained OD is still valid to represent the whole OD matrix

epicting the actual situation calculated on the basis of all traces.

his means to produce the AP positioning maximising the correla-

ion of the estimated OD with respect to the actual. 

. Methodology for AP positioning 

As a first approximation, we assumed to have the possibility of

etecting the flows by using the present APs distribution, by cap-

uring the real traces passing within a distance of 25 m from the

P position. The proposed approach can be viewed as a sort of par-

ial simulation based on real data about traffic flow, that is more

ealistic than producing fully simulated data. It is obvious that the

eal data captured by the APs would be probably only a part of

he real traffic of people passing close to them. On the other hand,

t is reasonable to verify that the simulated measures are strongly

orrelated to the real effective numbers. 

As a general consideration, only 1470,091 trajectories were

ound to intersect with the real APs positions, which in the down-

own are 1418,207 with respect to 494 APs. Therefore, in this man-

er, we assessed the available distribution of Wi-Fi APs in San

rancisco, in order to collect people flows related data through

obile devices. Once obtained the observations by finding the in-

ersections of the traces with the APs, an estimated OD matrix

as been produced, as reported by the chord diagram in Fig. 4 a.

n Fig. 4 b, the matrix of difference between the OD matrix of

ig. 2 and that of Fig. 4 a is reported; the differences between back

nd forward flows are not perceivable. 

The difference matrix of Fig. 4 b give the evidence of the dif-

erence from the real traffic flow with respect to the flow that is

stimated by using the present APs distribution in the city. The dif-

erences are reported with a grayscale (the higher the difference,

arker is the matrix element). The two OD distributions are uncor-

elated (a correlation of 0.12 has been measured, see Table 1 ). This

esult demonstrates the unsuitability of the present distribution of

Ps in San Francisco for collecting and modeling traffic flows. On

he other hand, their placement was not made with the aim of

easuring and observing people flows. 

http://www.disit.org/6694
http://www.openwifispots.com
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Fig. 3. Distribution of real Wi-Fi APs in San Francisco. 

Table 1 

AP models, cc = city center, bn = zip boundaries (within 300 m). 

Model Coefficient Std. Error t-statistic p-value Correlation # APs 

Real APs B 280393.858 19874.972 14.108 0.0 0 0 0.446 983 
α 9.448 0.543 17.400 0.0 0 0 

Real APs (cc) B 1598664.580 116546.825 13.717 0.0 0 0 0.12 494 
α 1.714 1.141 1.502 0.135 

(a) Random APs (cc) B 690144.338 75267.849 9.169 0.0 0 0 0.835 400 
α 52.921 2.813 18.816 0.0 0 0 

(b) High Traffic APs (cc) β 684144.945 52950.289 12.921 0.0 0 0 0.915 804 
α 10.942 0.389 28.114 0.0 0 0 

(c) High Traffic APs (bn, cc) B 1101641.803 86354.599 12.757 0.0 0 0 0.687 448 
α 13.586 1.159 11.727 0.0 0 0 

(d) High Traffic APs 400 (cc) B 810743.094 70801.471 11.451 0.0 0 0 0.835 400 
α 24.429 1.297 18.829 0.0 0 0 

(e) Real augmented APs withHigh Traffic APs (bn, cc) B 748987.390 58260.615 12.856 0.0 0 0 0.892 400 
α 39.960 1.634 24.453 0.0 0 0 
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.1. Adopting AP positioning models 

On the other hand, a more efficient AP positioning scheme

hould achieve better correlations and smaller standard error, and

hus better precision for the estimation of OD matrix (and indi-

ectly people flows in the city). To this purpose, similarly to Fei

t al. [21] a set of heuristics have been identified to find a com-

romise from precision and OD estimation. Thus, a number of dif-

erent methods for AP positioning and thus for flow observations

ave been adopted and tested, taking them from the literature of

he classical traffic flow observations strategies by humans. We

hen started by creating a uniform distribution grid of APs, ide-

lly placed at the middle of each street. In all cases, each AP was

onsidered as a circular area with 50 m of diameter. 

The resulting APs set, consisting of 14,959 APs (a number of de-

ices that is surely too high to be affordable), was further reduced
sing different strategies as reported in the following. Moreover,

he reduction is also reasonable since a uniform distribution in all

he zones of the city is not feasible. There are many zones in which

he flows are very low, at least in the simulated data taken into ac-

ount. On the other hand, the positioning of the APs in low flow

reas is not efficient. 

Also, a flow prediction strategy should be able to tell where

o place traffic sensors, and how many sensors to use, providing

 tuning strategy for selecting the required set of sensors, with the

im of minimizing the number of traffic sensors and the costs of

eriodic maintenance of the monitoring infrastructure. In this sec-

ion, we provide some alternative strategies of AP placement, in

rder to minimize the number of APs, and to obtain a satisfactory

atch (i.e., statistically significant) between the real cab data and

he data registered by the APs. The possible scenarios for AP dis-

ribution are the following. 
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Fig. 4. (a) Chord diagram of flow counts with real Wi-Fi APs in the city center; (b) 

Difference matrix among OD matrices of real flows and estimated with real Wi-Fi 

APs in the city center. 
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a) Random APs : identification of the streets with the highest trace

flow rate (those that have at least 30 0 0 traces) and then ran-

dom selection of 400 APs from the AP grid described above (see

Fig. 5 a for the OD matrix). This set of APs is a subset of the set

described in case (b). 

b) High Traffic APs : identification of the streets with the highest

trace flow rate (those that have at least 30 0 0 traces) and then

selection of all the APs intersecting those traces, thus resulting

in 804 APs (see Fig. 5 b for the OD matrix). 

c) High Traffic APs (zip boundaries) : identification of the streets

with the highest trace flow rate (those that have at least 30 0 0

traces) and then, starting from the 804 APs of case (b), selection

of those within 300 m from the zip boundaries, thus resulting

in 448 APs (see Fig. 6 c for the OD matrix). This set of APs is a

subset of the set selected in case (b). 

d) High Traffic APs (top 400) : identification of the streets with the

highest trace flow rate (those that have at least 30 0 0 traces)

and then, starting from the 804 APs of case (b), selection of the

top 400 APs (see Fig. 5 d for the OD matrix). This set of APs is

a subset of the set selected in case b. 
e) Real augmented APs with selected high traffic APs ( Fig. 5 e): the

real distribution of the AP in San Francisco’s downtown was

integrated with the top 300 AP from case (d) with the high-

est traffic rate. This set was then cleaned up by removing those

APs that were found to be at a distance less or equal than 50 m

from the real APs, and removing also intersecting APs, thus re-

sulting in 400 APs (221 real APs, 179 high traffic APs). 

The resulting OD matrix for these distributions of APs has been

stimated by computing the intersections between the real cab

easures with the placed APs, according to a capturing range of

5 m radius. The OD matrix for this configuration was generated

y evaluating the traffic counts among the various APs, grouped by

he zip code they belong to. The chord diagrams of these scenarios

re reported in Fig. 5 . 

.2. Assessing AP positioning models 

A comparative analysis of traffic flows was conducted, using the

bove cited set of cab traces, consisting of 11,219,955 unique de-

ections from 536 cabs, with respect to the above described sce-

arios. With the above assumptions, the real set of APs placed in

he city centre was used to sample the original data set, by cal-

ulating the APs intersections with the cab traces. The OD matrix

as calculated from the sampled data set (considering each city

ip code as a separate area), reporting the traffic counts among

very city’s area. This procedure was repeated by choosing the APs

ith a pseudo random technique, and by placing the APs only in

he roads with the biggest amount of traffic. After that, a compar-

tive statistical analysis was conducted for each configuration (see

able 1 ). The traffic flow outcome is predicted with a linear re-

ression, finding the parameters that best fit the data in the linear

odel 

 = αx + β (3)

here x is the dependent variable or predictor (i.e., traffic counts

s registered by the sensors), and y is the outcome (i.e., predicted

raffic counts). Building the model in (3) using the set of real APs

ives a correlation of 0.446 (0.120 using the real APs in the city’s

owntown) with respect to the real traces. A number of cases have

een assessed following the placement strategies described in Sec-

ion III. In case (b), the APs have been placed on the roads with the

ighest traffic rate, producing a model with a correlation of 0.915,

nd of 0.835 using only the top 400 APs, as described in case (d);

sing random APs of case (a) gives a correlation of 0.835; using

he APs only within 300 m from the areas’ boundaries, described

n case (c), gives a correlation of 0.687. It is clear from this data

hat using the real APs set produces noise and doesn’t produce a

eliable model for flows prediction. Randomly distributing the APs

ives a better correlation with the cab traces, while reducing the

umber of APs and considering only those in the proximity of each

rea, gives a good correlation while maintaining a limited number

f APs. The set of real APs of case (e), integrated with some other

Ps and cleaned up from some not useful or redundant elements

i.e., mutually intersecting APs), gives a correlation of 0.892. To vi-

ualize the results of the various OD models a web interface was

eveloped, with the possibility to view the chord diagram for each

omputed configuration. The interactive versions of the chords di-

grams in which it is possible, for each couple of locations, to see

he effective flows (in a way and in the other, for a given time

lot of the day) are accessible at http://www.disit.org/6694 . This

pproach allowed to identify which are (i) the positions of the new

Ps to be added (i.e., 179) and (ii) the minimum set of APs already

n place that must be used for data acquisition (i.e., 229). The sec-

nd point allows keeping limited both the network bandwidth and

he workload for the estimation of the OD matrix. 

http://www.disit.org/6694
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Fig. 5. Chord diagram of flow counts. Cases as described in Table 1 : (a) Random APs; (b) High traffic APs; (c) High traffic APs (zip boundaries); (d) High traffic APs (top 

400); (e) Real augmented APs. 

Fig. 6. Heat-map comparing city users’ most frequented places vs the position of 

the 1500 Wi-Fi APs of the whole network (using a colour gradient scale to discrim- 

inate between different densities of measures). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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A fully mathematical approach could be applied for the identi-

cation of the best AP in San Francisco having dense traces, but it

ould not be suitable for the re-computing it in a new fresh area

without data). In substance if a position of APs is identified in San
rancisco just minimising the error, the position of the AP would

ot follow any rule that could be re applied in a different city to

osition the APs or select the APs to be reconfigured. Thus we de-

ided to test a set of heuristics and select the best, and thus to use

he identified approach to position/select the AP in Florence. 

. City user’s behaviour analysis 

The above described AP placing methodology has been ex-

loited in the city of Florence (Italy), for selecting the AP needed

or the estimation of city users’ behaviour. 

Typically, it can be supposed to derive users’ behaviour from

ata collected from the telecom operators. On the other hand,

he mobile operators are not authorized in reselling data report-

ng the fine tracking of their users, even if the mobile/user ID

s anonymized. In most cases, mobile operators provide data col-

ected every 15 min, reporting the number of users for each clus-

er of their cells and without tracking the movements from one

ell/cluster to another. Some of them provide OD matrixes statisti-

ally estimated starting from the described data and thus providing

 limited precision in space and time, and not in real time. These

acts limit the possibility to use those data to perform a city users’
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Fig. 7. Segment of the heat-map reporting the hottest places detected by using se- 

lected Firenze Wi-Fi APs, in Florence downtown. 

Fig. 8. Distribution of hottest places in the city (truncated series), number of Wi-Fi 

accesses in last 180 days. 
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behaviour analysis, area clustering and the usage of data for early

warning. 

On the contrary, the usage of Wi-Fi network can be used for

tracking city users’ behaviour with the needed resolution (in space

and time), by accessing to data anonymously and exploiting them

according to an informed consent with the users when they con-

nect to the Wi-Fi. The above presented methodology for AP place-

ment has been used on the Firenze Wi-Fi infrastructure to identify

the suitable APs to be considered for the analysis, with the aim

of reconstructing city users’ behaviour in space and time. At this

regard, Florence offered a free Wi-Fi network (Firenze Wi-Fi) con-

sisting of about 1500 APs. One relevant issue is that Firenze Wi-Fi

APs were installed with the aim of providing a good Wi-Fi cover-

age in the city’s centre and in relevant city services as hospital and

university. 

As a first step, we identified the most active places and ar-

eas to the monitored, on which the above presented methodology

would be applied. This action has been performed by interview-

ing the municipality and by using data collected from mobile App

(Florence, Where, What?), available for Android, iOS and Windows

Phone stores [11] . That App work with smart city API based on

Km4City [4] and provides general information to the city users al-

most uniformly in the city and on multi-domain since it provides

information and suggestions on: public and private mobility, cul-

ture, energy, accommodation, restaurant, tourism, free Wi-Fi, bus

lines, car parking, pharmacies, ATMs, events, etc. These services are

accessible with geo information. 

Fig. 6 reports the heat-map derived from the city users’ move-

ments in the city by using the App with overlapped the position

of the 1500 AP of the Wi-Fi network. Considering the architec-

tural and environmental constraints of the historical centre of Flo-

rence (that is part of the UNESCO World Heritage list), you cannot

place APs wherever you want: in most cases, we have to switch on

the nearest AP to the predicted one, rather than effectively place

the desired AP. The resulted analysis allowed us to select the best

points and from these about 345 candidates APs to be configured

and used as probes, selected from more than 1500 AP located in

the city. The data related to the user behaviour tracking via Wi-

Fi has been collected in the period from May 2016 to December

2016. They consist of about 56 Million of events of connection and

disconnection. Typically, the 60% of connected users are excursion-

ists that stay in the network only for less than 24 h. In the last

6 months, about 1.15 Million distinct users have been detected,

which means about 2.3 million of distinct user per year in a city

with about 14 million of new arrivals per year and 350.0 0 0 in-

habitants. So that we tracked about the 16% of people flow. We

compared the predictions from the positioning methodology with

the existing APs data, finding the APs to be added and those that

were useless for the study. According to the selected AP, the result-

ing heat-map describing the distribution of measures performed by

the AP is reported in Fig. 7 . The developed tool allows customizing

the provided map, for example varying the radius and the opacity

of the heat spots. 

The data analysis allows identifying the hottest places (in terms

of events on the APs) as reported in Fig. 8 , where the names of

the locations and the precise latitudes and longitudes have been

truncated for safety reasons. On the other hand, they are also well

known location to everybody in the world. 

Similarly, a number of visual analytics graphs are produced,

such as: the numbers of distinct users during the day, the aver-

age connection time per AP, the number of working APs in the

last minutes, the regency (percentage of new users with respect

to the already seen users) and frequency of users. This last view is

of particular importance since it allows estimating the number of

new users coming into the city. Indeed, it is worth noting that for

cultural cities like Florence, newcomers are typically tourists (ex-
ursionists) or business people that stay in the city only for a few

ours and days. 

Every working day the network identifies about 34.0 0 0 distinct

sers and among them, about the 10% are new users for the net-

ork in the period. For the present analysis, we assumed that new

sers exploit the city up to 10 days before leaving, while old users

ontinue to exploit the city beyond that limit. 

Fig. 9 reports the users regency found in the range 1–28 days.

very column in the histogram shows the number of distinct users

y-axis) that at most returned in the city within a defined num-

er of days (x-axis). It is evident from this pattern, that most of

he users using the Wi-Fi network are exploiting the city for a few

ays before leaving. This kind of analysis can be performed at large

cale (i.e., considering the whole city) or simply by observing the

ser behaviour in some zones of interest. For example, the analy-

is of regency in the historical city centre (which is normally the

ost exploited part of the city) can provide valuable insights, since

t allows understanding which cultural attractions people prefer to

isit, or where and how often they return to them. 

.1. Origin destination analysis for people flow 

To better understand the movements in the city, it is mandatory

o perform flow analysis to effectively evaluate user’s behaviour.

ince in the downtown the APs are also overlapped this issue has

o be taken into account. The measures performed by the mobile

PP (as described in first part of Section 4 ) have been also used to

efine a compromising size for each area collecting accesses to the

i-Fi. On the basis of the tracked city users among the APs of the

i-Fi network it is possible to computer the OD matrix according

o the origin and destination area defined by the distribution of the

Ps in the city. On the other hand, the OD matrixes are typically
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Fig. 9. Number of distinct users accessing to the Wi-Fi network, regency from 1 to 28 days. 

q  

F

 

t  

O  

m  

d  

m  

n  

n  

c  

a  

f  

r  

w  

o  

w  

t  

O  

l  

c  

u  

n  

s

4

 

i  

d  

a  

w  

p  

a  

p  

o  

l  

o

 

o  

t  

e

 

m  

e  

a

 

c  

a  

t  

w  

i  

m  

t  

i  

e  

s  

a

 

s  

2  

c  

f  

(  

d  

t  

n  

f  

t  

c  

g  

e  

t

 

a  

s  

e  

r

 

o  

w  

[  

s  
uite sparse as one can see in Fig. 10 a, where the OD matrix for

lorence is reported. 

Fig. 10 b reports a new approach for depicting and analysing

he OD matrixes. It is a visual analytic approach for depicting an

D matrix as what we call OD Spider Flow in which the analyst

ay identify the hottest areas of the city as those with larger and

arker points/dots. When a dot is selected the graph reports the

ajor (in/out) flows from that origin to the most probable desti-

ations, also providing the percentage of probability on the desti-

ation dots. Every flow is depicted with an arrow and a coloured

ircle reporting the total number of occurrences and their percent-

ge with respect to the total flows. The analysis can be performed

or the whole city users or only for the new arriving users (with

espect to the last 10 days), for each time slot of the day or for the

hole day, for incoming and outgoing flows, and at different level

f resolution (zoom). Zooming in/out the map redraws the flows

ith a different cluster zone, making possible to depict more de-

ailed or aggregated flows between the various zones. The classical

D matrix can be shown as well from the same tool, also calcu-

ated with a customizable range within the city’s centre, for the

hosen flow configuration (i.e., cluster area’s size, hour of the day,

ser profile). This kind of derived information can be used for run-

ing the services in the city, to plan the cleaning, to distribute the

ecurity people, etc. 

.2. Understanding city usage from AP data 

From the analysis of the OD matrices and/or OD Spider Flows

t is evident that different parts of the city are differently used by

ifferent city users. AP presents different kind of trends in the us-

ge of the Wi-Fi along the 24 h and in the different days of the

eek [28] . For example, we may have some areas by which the

eople typically arrive (station) in the morning and leave in the

fternoon while they are less accessed at lunch time. For exam-

le, some APs could have a huge workload only during mornings

r evenings (when people go/back to/from work), others only on

ate evenings (when people go out for entertainment), others only

f festive days etc. 

In Fig. 11 , an example of trend for a certain AP along the 24 h

f the day. The trend of Fig. 11 has been estimated by computing

he averaged value per time slot of a certain AP every working day,

xtracting data from the 56 million of data described above. 
In Florence, as in many other touristic cities, the issue is much

ore complex, since a lot of different city users’ kinds (with differ-

nt aims) use the city at the same time during the working days,

nd as well as on Saturday and Sunday. 

Therefore, in order to tune the services in the city (security,

leaning, transport, etc.), it is very important to infer patterns and

nalyse city user’s behaviour. In the present scenario, the major in-

erest is related to understand how the city is used by city users

hich in turn can be re-conduced to the problem of understand-

ng how APs work and are used. The idea is to exploit some data

ining techniques clustering AP on the basis of their normalized

emporal pattern. This will allow grouping them in areas and put

n evidence the flows and the service exploitation in the differ-

nt city’s zones. Clustering the APs’ behaviours can help to under-

tand if there are zones having a similar usage and exploitation

nd hence similar flow patterns, and needs in terms of services. 

According to the data collected from the Wi-Fi network de-

cribed at the beginning of Section 4 , the averaged trend along the

4 h of the day, for each AP, for each day of the week has been

omputed. Since the main interest is to find the similar patterns

or each AP a Scale Factor and the normalized averaged pattern

from 0 to 1) has been computed. This resulted in 345 APs, on 7

ays, on 48 time slot for the day (one every 30 min) (from 0 0:0 0

o 00:30, from 00:30 to 01:00 and so on until 23:30). A prelimi-

ary analysis of AP patterns showed a marked difference between

estive and ferial days. For this reason, we chose to cluster the

ime series by keeping track of their respective day of week, thus

onsidering working days, Saturdays and Sundays as three distinct

roups. From the statistical point of view, the temporal pattern for

ach AP presents an average and an interval confidence for each

ime slot as depicted in the examples reported in Fig. 13 . 

Since we are interested in finding similar patterns for the APs,

 clustering approach has been adopted to find similarities in time

eries as in the Dynamic Time Warping [42] , and by using differ-

nt clustering algorithms and metrics to evaluate both the better

anked clustering algorithm and the proper number of clusters. 

Among the clustering algorithms we compared the results

btained by using: k-means clustering algorithm minimizes the

ithin-class sum of squares for a given number of clusters

26,33] hierarchical clustering [39] , density-based clustering or

ubspace clustering. Unlike k-means clustering, hierarchical cluster-
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Fig. 10. OD Matrix for Florence downtown: (a) classical view; (b) advanced pro- 

posed view. (For interpretation of the references to colour in the text, the reader is 

referred to the web version of this article.) 

Fig. 11. Typical AP trend in terms of number of connections along the 24 day, a 

working day. 

Table 2 

Geometric characteristics of mixture models. 

Model Distribution Volume Shape Orientation 

EII Spherical Equal Equal –

VII Spherical Variable Equal –

EEI Diagonal Equal Equal Coordinate axes 

VEI Diagonal Variable Equal Coordinate axes 

VEE Ellipsoidal Variable Equal Equal 

VVE Ellipsoidal Variable Variable Equal 
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ng builds a bottom-up hierarchy, and does not need to specify the

umber of clusters. For the clustering, the closeness of cluster ele-

ents can be determined by using (a) complete linkage clustering

i.e., finds the maximum distance between points of two clusters),

b) single linkage clustering (i.e., finds the minimum distance be-

ween points of two clusters), (c) mean linkage clustering (finds all

airwise distances for points of two clusters, calculating the aver-

ge), (d) centroid linkage clustering (i.e., finds the centroid of each

luster and then calculate the distance between the centroids of

wo clusters). 

.3. AP clustering experimental results 

In this section, the comparative analysis among some of the

bove mentioned different clustering methods is reported. It

hould be noted that, different clustering techniques and, even for

he same algorithm the selection of different parameters or the

resentation order of data objects may greatly affect the final clus-

ering partitions. Thus, the adoption of rigorous evaluation criteria

s mandatory to trust the cluster results: selection of model and

lusters number. 

As first step, we have tested cluster tendency i.e., the hypothesis

f the existence of patterns in the data using the Hopkins statis-

ics [8] . Hopkins statistic has been used to assess the clustering

endency of the dataset by measuring the probability that a given

ataset is generated by a uniform data distribution (i.e., no mean-

ngful clusters). Hopkins statistic is equal to 0.2186, thus the data

s clusterable. 

As a second step, two clustering techniques have been adopted

nd compared using the above described observations and data

ets of AP patterns in the 24 h (Monday-Friday, Saturday and Sun-

ay). The first technique was a sort of K-means clustering algo-

ithm, partitioning around medoids (PAM) which are the most rep-

esentative elements in the cluster instead of the centroid as in

he k-means. PAM approach is also called K-medoids [29] . The sec-

nd approach is the Model-based Expectation- Maximization algo-

ithm or EM algorithm (EM method) [18] , [34] . It is a generalization

f the k-means approach that uses an iterative process to find the

aximum likelihood (or the maximum a posteriori estimates of

arameters, MAP). The algorithm’s iteration consists of two steps:

he expectation step (E) which, using the parameters’ current esti-

ation, calculates a function for the expectation of the respective

og-likelihood; and a maximization step (M) which calculates the

arameters maximizing the expected log-likelihood from step (E).

he estimated parameters are used to calculate the distribution of

atent variables in the next iterative step E. 

A model-based method was used to evaluate the number of

lusters/groups and the BIC criteria to determine the best model

22] . Under this approach, each mixture component represents a

luster, and group memberships are estimated using maximum

ikelihood [18] . The maximum likelihood estimator (MLE) of a

nite mixture model is usually obtained via the EM algorithm

18] , [34] . In the multivariate setting, the volume, shape, and ori-

ntation of the covariances can be constrained to be equal or vari-

ble across groups. Table 2 reports six possible models with the
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Fig. 12. Optimal number of AP clusters via Elbow criteria (comparing K-means and 

PAM): within sum of square function. 

Fig. 13. Optimal K number of clusters via Gap curve (comparing K-means and 

PAM). 
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Fig. 14. Average BIC for mixture models vs K number of cluster, higher values are 

better, the curves are truncated at the best value for K they found. 

Table 3 

Standard deviation and population for AP clusters. W: 

Working days, Sa: Saturday, Su: Sunday. 

Cluster Id Avg. std. dev. Population 

1 0.2379 W: 172, Sa: 23, Su: 24 

2 0.0849 W: 23, Sa: 43, Su: 43 

3 0.0882 W: 8, Sa: 42, Su: 34 

4 0.1820 W: 3, Sa: 30, Su: 26 

5 0.1059 W: 20, Sa: 15, Su: 14 

6 0.0822 W: 38, Sa: 15, Su: 8 

7 0.1311 W: 9, Sa: 57, Su: 34 

8 0.1374 W: 2, Sa: 23, Su: 55 

9 0.1226 W: 4, Sa: 32, Su: 38 

10 0.1460 W: 52, Sa: 12, Su: 3 

11 0.2487 W: 11, Sa: 13, Su: 21 

12 0.1617 W: 1, Sa: 28, Su: 31 
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fi  

c  

a  

l  

a  

f  

a  
orresponding distribution structure type, volume, shape, orienta-

ion, and associated model names. 

With the Elbow method (as reported in Fig. 12 ), the solution

riterion value (within groups sum of squares) will tend to de-

rease substantially with each successive increase in the number

f clusters: after 8 clusters the observed difference in the within-

luster dissimilarity is not substantial. Consequently, we can say

ith some reasonable confidence that the optimal number of clus-

ers to be used seems to be 7. Note that identifying the point in

hich a “kink” exists is not a very objective approach and is very

rone to heuristic processes. For these reasons, we computed the

ap statistics [40] to assess the optimal number of clusters in the

ata. From this analysis reported in Fig. 13 , the estimated number

f clusters K = 12. 

Finally, Fig. 14 shows the average BIC (Bayesian Information Cri-

eria) values for six different mixture models using the model-

ased approach over a range of different numbers of clusters [34] .

ith the VEE mixture model, the maximum average BIC score is

eached at 10 clusters. In addition, the VVE mixture model also

chieves higher BIC values than the VEE model up to 10 clusters.

herefore, the model-based approach favors the diagonal model

hich produces higher quality clusters. The BIC analysis selects the

VE model at 10 clusters. Note that although the BIC analysis does

ot select the best model, it allowed selecting the better number

f clusters in this data set. 

We used the Dunn index [20] as a measure to assess the va-

idity of cluster techniques. Dunn index is based on inter-cluster

istance and the diameter of cluster hypersphere. It can be seen

hat PAM clustering performs the best with 12 clusters (Dunn in-
ex for PAM is equal to 0.0798, for K-means is equal to 0.0730 and

or Model-based is equal to 0.0478). 

As a final result, the EM algorithm with 12 clusters has been

dopted for massive and continuous computing. On this regard,

able 3 reports the average standard deviation and the related pop-

lation of each AP cluster. 

In Fig. 15 , the distribution of clustered AP in the Florence map

or day kind: Monday-Friday, Saturday and Sunday in which AP of

he identical color belong to the same cluster disregarding the day

ind. From Fig. 15 , it can be noticed that group of APs located in

he Cascina park (black) is enlarging passing from working days to

unday, while the cluster of downtown (dark red) is losing some

f its APs passing from working days to Sunday. While some of

hem remain stable: mainly those located in the major attractions

or tourists. The maps reported in Fig. 15 can be easily accessed by

 real time tool accessible for the municipality of Florence. Each

luster has a different color, and clicking on an AP opens a popup

ith detailed data about the specific AP and the cluster at which it

elongs to (i.e., cluster id, maximum, minimum, average flow and

tandard deviation). In this way, we are able to see in an intuitive

anner if there are adjacent zones that show similar AP daily pat-

erns. 

Fig. 16 reports the normalized shapes of the 12 clusters identi-

ed which resulted from the best clustering algorithm, the EM. It

an be noticed that the second cluster presents APs with relevant

ctivity during the morning and afternoon respecting a break for

unch. Moreover, some clusters provide an evident activity in the

fternoon with respect to the morning or vice versa, but with dif-

erent proportions. A few of them present significant activity also

fter dinner and in the first hours of the night, as clusters number
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Fig. 15. Map of AP clusters: (a) Monday-Friday, (b) Saturday, (c) Sunday. (For inter- 

pretation of the references to colour in the text, the reader is referred to the web 

version of this article.) 

 

 

 

m  

u  

i  

t  

t  

c  

t  

t  

d  

b  

a  

a  

t  

w  

m  

A  

d  

q  

t  

a  

t

 

i  

a  

a

 

m  

e  

A  

[  

[  

a  

t  

r  

h  

c

 

a  

s  

r

y

 

fi  

l  

t

 

r  

t  

t  

l  

t  

A  

t  

t  

v  

t  

f  

u  

p

6

 

m  
1 and 9. So that, it is evident where the city is active during the

night. 

5. Predicting access point connections 

The data collected from the Firenze-Wi-Fi network have been

analysed to derive a number of information and knowledge: heat
ap as most frequent places and hottest areas in the city, daily

ser behaviour patterns in the city area to understand how the city

s used, OD matrix to extract people movements. In this section,

he development of a model for predicting the number of connec-

ions of each specific AP in the city is presented. The number of

onnections of an AP is directly related to people presences. And

hus, it can be used for planning in advance, as well as, it poses

he basis to be used as an instrument for early warning: that is for

etecting dysfunctions as un-expected patterns in the city users’

ehaviour. To this end, the autoregressive integrate moving aver-

ge approach (ARIMA), have been adopted as solutions to set up

ccurate predictive models in order to detect dysfunctions. The au-

oregressive part (AR) of model creates the basis of the prediction,

hich can be improved by a moving average modelling for errors

ade in previous time instants of prediction (MA). The order of

RIMA modelling is defined by the parameters ( p,d,q ): p is the or-

er of autoregressive model; d is the degree of differencing, and

 is the order of the moving average part, respectively. The predic-

ive model has been developed by using Box-Jenkings methodology

s ARIMA modelling [12] , and the solution has been compared in

erms of performances with a set of other models. 

We chose to consider the time series by dividing the week

n three distinct groups, thus considering working days, Saturdays

nd Sundays, in order to maintain consistency with the cluster

nalysis. 

For the analysis, we have applied different predictive ARIMA

odels for each 30 min interval, for each groups of days and for

ach AP. Note that, for each time interval we estimates the best

RIMA model according to the AIC, Akaike Information Criterion

1] . In most cases, the best predicting model has been an ARIMA

5,1,0] (it is an ARMA model), meaning that the model takes into

ccount of 5 observations from the past, and by the difference of

he last two observations. The best AICs have been obtained in the

ange of 10 0 0–130 0 in different time slots. Better predictive results

ave been obtained for the AP in which a significant number of ac-

esses are typically present. 

The ARMA forecasting equation for a stationary time series is

 linear (i.e., regression-type) equation in which the predictors con-

ist of lags of the dependent variable and/or lags of the forecast er-

ors. For ARMA [5,1] we have: 

 t − y t −1 = ε + a r 1 ( y t −1 − y t −2 ) + a r 2 ( y t −2 − y t −3 ) 

+ a r 3 ( y t −3 − y t −4 ) + a r 4 ( y t −4 − y t −5 ) + a r 5 ( y t −5 − y t −6 ) 

Where: ar 1 , ar 2 , ar 3 , ar 4 , ar 5 are determined during the identi-

cation of the model minimising the root square error during the

earning period, ɛ is an independent variable with normal distribu-

ion and zero mean. 

In Fig. 17 , two examples of AP time series with prediction are

eported. Each of them reports: in blue line the average value of

he cluster at which the AP belong; the light blue bound describes

he interval confidence of the reference cluster of the AP; the red

ine the actual value of the day; the orange bound describe the in-

erval confidence obtained by the distribution of the value of the

P in the past; finally, the RED segment (second part segment) is

he effective prediction by using the ARIMA model. Please note

hat, the adopted ARIMA model does not take into account the

alue collected by the same AP in the day, since we would like

o use the predictive model for detecting dysfunctions and not to

ollow the most probable next values. The detection of critical sit-

ation can be obtained making the difference from those two ap-

roaches/ estimations. 

. Conclusions 

Understanding and predicting city user behaviour is one the

ajor topics in the context of Smart City to optimize and tun-
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Fig. 16. The shapes of the AP clusters with k = 12 and EM clustering algorithm. 

i  

i  

a  

n  

O  

m

 

d  

fl  

t  

b  

A  

b  

i  

t  

w  

a

 

n  

d  

a  

t  

u  

t  

fi  

p  

a  

c  

i  

e  

p  

c  

s  
ng city services (security, clean, transport,..) and to be ready

n reacting via anomaly detection. In this paper, we presented

 method for AP placement, and a number of algorithms, tech-

iques and solution for estimating city user behaviour: heat-map,

D Spider Flow, clustering of AP usage in the city, predictive

odel. 

The proposed methodology is general and can be applied to

ifferent urban scenarios, in the context of Smart City people

ow assessment and management. It makes use of Wi-Fi AP dis-

ributed in the city. Comparative analysis has shown that is possi-

le to have a reasonable precision in assessing city behaviour by

P positioning and collecting data from Wi-Fi, as demonstrated

y a validation based on real data. The proposed approach allows

dentifying which are the needed APs to be added, with respect

o the APs that are already in place in the city, to exploit the

hole infrastructure of Wi-Fi, also for people flow monitoring and
ssessment. t  

p

The proposed methodology has being applied to identify sig-

ificant APs in the city of Florence (Italy). Wi-Fi. Thus collected

ata were analysed to produce usage metrics and studying AP us-

ge. To this end, several clustering techniques have been adopted

o identify the better clustering approach for grouping city users’

sage trends in the day for each city area. The results have shown

hat about 12 different major clusters/patterns have been identi-

ed. Each AP can be classified with respect to a cluster trend and

rovides its specific own scale. The corresponding AP data, trend,

nd cluster can be used for predicting number of accesses and thus

ity usage, as a well as for detecting unexpected trends incepting

n the different places of the city (they may be due to programmed

vents as well as to detect anomalies as early warning tool). We

erformed our analysis by using various clustering algorithms and

alculated different informative criterions to select the best and as-

ess their objective quality. The resulting model proves to be effec-

ive for connection to AP forecast in the entire Wi-Fi network and

otentially for early warning. 
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Fig. 17. APs time series with their respective cluster ranges (see details in the text). 
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